Earthshine as an Illumination Source in Permanently Shadowed Regions

Dave Glenar

University of Maryland, Baltimore Co.

Tim Stubbs, Tim Livengood
NASA Goddard Space Flight Center

Ty Robinson, Eddie Schwieterman
University of Washington / NASA ARC

2015 Solar System Exploration Virtual Institute

VA SA

PSR Searches using Scattered Light

☐ Haruyama et al. (2008) imaged Shackleton Crater using SELENE Terrain Camera. Light source was solar illuminated crater rim. Surface albedo too low for abundant, unmixed, surface ice.

- □ Paige et al. (2010) compared Diviner results with illumination model including direct and scattered sunlight, and direct Earthshine.

 Simulation used simple (circa '69) Earth radiation budget model.
- □ Mazarico et al. (2011) estimated scattered sunlight at selected points. Surface irradiance up to ~7,000 mW m⁻². Annual averages to 1,500 mW m⁻². Study included Earth visibility but no estimates of Earth energy input.

This Study . . .

We examine Earthlight as a secondary illumination source in PSR's.

Questions Addressed:

- ☐ Can Earthlight provide sufficient radiance to influence the stability of volatiles in PSR's?
- ☐ In absence of sunlight, Is it bright enough for future robotic optical sensing (imaging, photometry, spectroscopy, polarimetry) in these areas?

Approach:

- ☐ Use "idealized" Shackleton Crater geometry, located at South Pole. Azimuthally symmetric profile (no DEM needed).
- ☐ Utilize Virtual Planetary Laboratory/ VPL (NASA, U. Wash.), Earth radiance models. Constrained by EPOXI Earth observations.
- ☐ Compute direct and scattered illumination at the crater, at solar-band and thermal wavelengths.

Illumination at Shackleton Crater

- ☐ Top portion of crater wall receives direct solar light in Summer only. Larger areas of the wall receive direct Earthlight all year long.
- ☐ Earth at solar band goes through phases. "Thermal" Earth is constant full-phase.

Earth Irradiance at the Moon - Spectral

Earth Irradiance at the Moon - Maps

Model Geometry – Shackleton Crater

Radiometric Model:

- □ Radiance from unocculted Earth elements is summed at each wall element. Separate "bookkeeping" for solar band and thermal wavelengths.
- □ Each illuminated <u>wall</u> element scatters onto all <u>target</u> elements. Use Hapke reflectance function at solar band. At thermal, assume e~0.9 (r~ 0.1).
- ☐ Summations give the scattered light irradiance at the crater floor.

Crater Illumination – Sample Results

Mar 8 Elev 2.5° Earth Illum 100 % Earth Illum 77 %

Mar 12 Elev 6.4°

Mar 15 Elev 5.3° Earth Illum 44 %

Mar 18 Elev 1.4° Earth Illum 15 %

Crater Illumination – Sample Results

Summary and Status

- □ Surface irradiance of Earth scattered light within Shackleton crater gets as large as ~1.5 mW m⁻² (solar band), and ~0.5 mW m⁻² (thermal), depending on Earth phase and elevation angle.
- ☐ These values are within an order-of-magnitude of present estimates for internal heat flow in PSR's (10-20 mW m⁻²).

Current tasks:

- ☐ Estimate the interior surface brightness under these illumination conditions. Can crater interior be measured with high signal-to-noise,using Earthlight alone?
- □ Add VPL results at 1-day cadence, spanning a full lunation, in order to get the time-average energy input.
- ☐ This is very much a work in progress. ⑤